Nonlinear control and protection concepts for Smart Power ICs

Project focus

  • Mathematical modeling of a Smart Power IC
  • Development of model-based digital control and protection functions
  • Implementation and verification on a testbench

Description

Smart Power ICs are used for switching medium and high current loads in low-voltage automotive and industrial applications. Figure 1 shows exemplarily the application range of the PROFET™ Smart Power IC Series from Infineon.

 

Application Range of the Infineon PROFET™. © Infineon Technologies AG.

A Smart Power IC combines a power switch together with integrated control and protection functions in a single IC. Nowadays these control and protection functions are usually implemented with analog circuit elements. These analog control and protection functions exhibit major drawbacks. For example their reuse for different power classes and switching loads is often not feasible without a major redesign of the analog circuit. Moreover, advanced model-based control and load estimation algorithms are hardly implementable in analog hardware.

The advent of affordable System on a Chip (SoC) technology allows to overcome these drawbacks by a digital implementation of the control and protection functions. The basic concept of such a digital Smart Power IC is shown in Figure 2.

Basic concept of a digital Smart Power IC.

The characteristic quantities of the power switch (load current and voltage, power supply and the control signal) are digitized with an analog digital converter (ADC) and further processed in the microprocessor of the SoC. For the control of the power switch a digital controllable driver stage is used.

This project is concerned with the development and test bench verification of model-based digital control and protection functions for Smart Power ICs. In particular it includes the development of optimal control strategies to reduce the electromagnetic interferences in the switching process, as well as the design of new over load detection concepts and load estimation algorithms.

Selected publications

  • M. Blank, T. Glück, H-P. Kreuter, and A. Kugi, Adaptive Gatestromprofile für die Schaltflankenregelung von Smart Power ICs zur EMI Reduzierung, in Tagungsband EMV-Fachtagung, Graz, Austria, 2015.
    [BibTex]
    @InProceedings{Blank15,
    author = {Blank, M. and Gl\"uck, T. and Kreuter, H-P. and Kugi, A.},
    title = {{A}daptive {G}atestromprofile f{\"u}r die {S}chaltflankenregelung von {S}mart {P}ower {ICs} zur {EMI} {R}eduzierung},
    booktitle = {Tagungsband EMV-Fachtagung},
    year = {2015},
    volume = {79},
    series = {OVE},
    publisher = {TU Graz},
    month = {4},
    isbn = {978-3-85133-085-4},
    address = {Graz, Austria},
    }
  • M. Blank, T. Glück, A. Kugi, and H-P. Kreuter, Digital slew rate and S-shape control for Smart Power Switches to reduce EMI generation, IEEE Transactions on Power Electronics, vol. 30, iss. 9, p. 5170–5180, 2015.
    [BibTex] [Download]
    @Article{Blank14b,
    Title = {Digital slew rate and {S-shape} control for Smart Power Switches to reduce {EMI} generation},
    Author = {Blank, M. and Gl\"uck, T. and Kugi, A. and Kreuter, H-P.},
    Journal = {IEEE Transactions on Power Electronics},
    Pages = {5170--5180},
    Volume = {30},
    Year = {2015},
    Number = {9},
    Doi = {10.1109/TPEL.2014.2361021},
    }
  • M. Blank, T. Glück, A. Kugi, and H-P. Kreuter, EMI Reduction for Smart Power Switches by Iterative Tracking of a Gaussian-shape Switching Transition, in Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM), Nuremberg, Germany, 2015, p. 1361–1368.
    [BibTex] [Download]
    @InProceedings{Blank15a,
    author = {Blank, M. and Gl\"uck, T. and Kugi, A. and Kreuter, H-P.},
    title = {{EMI} Reduction for Smart Power Switches by Iterative Tracking of a Gaussian-shape Switching Transition},
    booktitle = {Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM)},
    year = {2015},
    publisher = {VDE VERLAG GMBH, Berlin},
    month = {5},
    isbn = {978-3-8007-3924-0},
    pages = {1361--1368},
    url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7149176},
    address = {Nuremberg, Germany},
    }
  • M. Blank, T. Glück, A. Kugi, and H-P. Kreuter, Power Optimal Gate Current Profiles for the Slew Rate Control of Smart Power ICs, in Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 2014, p. 7190 – 7195.
    [BibTex]
    @InProceedings{Blank14a,
    author = {Blank, M. and Gl\"uck, T. and Kugi, A. and Kreuter, H-P.},
    title = {Power Optimal Gate Current Profiles for the Slew Rate Control of Smart Power ICs},
    booktitle = {Proceedings of the 19th IFAC World Congress},
    year = {2014},
    month = {8},
    pages = {7190 -- 7195},
    doi = {10.3182/20140824-6-ZA-1003.00124},
    address = {Cape Town, South Africa},
    }
  • M. Blank, T. Glück, A. Kugi, and H. P. Kreuter, Modellierung eines Smart High-Side Power ICs, at – Automatisierungstechnik, vol. 61, iss. 12, p. 849–858, 2013.
    [BibTex] [Download]
    @Article{Blank13,
    Title = {{Modellierung eines Smart High-Side Power {IC}s}},
    Author = {M. Blank and T. Gl{\"u}ck and A. Kugi and H.P. Kreuter},
    Journal = {at -- Automatisierungstechnik},
    Pages = {849--858},
    Volume = {61},
    Year = {2013},
    Number = {12},
    Doi = {10.1515/auto.2013.1003},
    }
  • M. Blank, T. Glück, H-P. Kreuter, and A. Kugi, Modellierung eines Smart High-Side Power ICs, in Tagungsband GMA-Fachausschuss 1.30 ”Modellbildung, Identifikation und Simulation in der Automatisierungstechnik”, Anif/Salzburg, Austria, 2012, p. 49–65.
    [BibTex]
    @InProceedings{Blank12,
    author = {Blank, Mathias and Gl{\"u}ck, Tobias and Kreuter, H-P. and Kugi, Andreas},
    title = {{Modellierung eines Smart High-Side Power {IC}s}},
    booktitle = {Tagungsband GMA-Fachausschuss 1.30 ''Modellbildung, Identifikation und Simulation in der Automatisierungstechnik''},
    year = {2012},
    publisher = {Technische Universit{\"a}t Darmstadt Institut f{\"u}r Automatisierungstechnik und Mechatronik},
    month = {9},
    isbn = {978-3-9815012-2-3},
    pages = {49--65},
    address = {Anif/Salzburg, Austria},
    }

Project partners and funding

Contact

Univ.-Prof. Dr.techn. Andreas Kugi

Status

ongoing