Regelung von Quantenzuständen für levitierte Teilchen

Schwerpunkte

  • Feedback-Kühlen von levitierten Nanopartikeln in deren quantenmechanischen Grundzustand
  • Erzeugung von nicht-klassischen Bewegungszuständen, z.B. gequetschten Zuständen und nicht-Gaußsche Zustände
  • Hochperformante Echtzeitregelung mittels FPGAs
  • Formung des Potentials der optischen Falle
  • Hochpräzise Messanwendungen auf Basis von Quanteneffekten

Beschreibung

Über das vergangene Jahrzehnt hat die Entwicklung optomechanischer Plattformen derartige Fortschritte erfahren, dass sich in der Manipulation von Nano- und Mikroobjekte  inzwischen Quanteneffekte zu manifestieren beginnen. Insbesondere bieten Systeme auf Basis optischer Levitation eine überlegene Isolierung der Nanopartikel von ihrer Umgebung während sie gleichzeitig  von der Flexibilität rein optischer Manipulation profitieren. Diese Experimente kombinieren etablierte Methoden aus der Optomechanik mit Strategien aus der Atomphysik, der Materiewelleninterferometrie und der Regelungstheorie, um makroskopische Quantenphysik zu erforschen. Zusammen mit ihrer unübertroffenen Empfindlichkeit haben levitierte Nanopartikel eine Vielzahl von möglichen Anwendungsgebieten, welche von der Erforschung dunkler Materie und Abweichungen zur newtonschen Gravitation bis hin zu kommerziellen Sensoranwendungen  reichen.

In diesem Forschungsprojekt wollen wir mithilfe von Methoden der Regelungstheorie echtzeitfähige Algorithmen entwickeln, um bewegte Quantenzustände des schwebenden Teilchens zu erzeugen. Dazu ist die Kühlung des Teilchens (genauer: der Bewegung des Massenschwerpunkts) durch Feedback ein entscheidender erster Schritt, der durch die Kombination von Heisenberg-begrenzten Messungen mit optimalen stochastischen Regelungskonzepten möglich ist. Dies öffnet die Tür zu quantenmechanischen Bewegungszuständen wie beispielsweise gequetschten Zuständen und letztlich nicht-Gaußschen Zuständen.

Ausgewählte Publikationen

  • L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, S. G. Hofer, S. Hong, N. Kiesel, A. Kugi, and M. Aspelmeyer, Real-time optimal quantum control of mechanical motion at room temperature, Nature, vol. 595, p. 373–377, 2021.
    [BibTex] [Download]
    @Article{magrini2021,
    author = {L. Magrini and P. Rosenzweig and C. Bach and A. {Deutschmann-Olek} and S. G. Hofer and S. Hong and N. Kiesel and A. Kugi and M. Aspelmeyer},
    title = {Real-time optimal quantum control of mechanical motion at room temperature},
    doi = {10.1038/s41586-021-03602-3},
    pages = {373--377},
    volume = {595},
    journal = {Nature},
    year = {2021},
    }

Partner

Aspelmeyer Group

Forschungsförderung

Dieses Projekt wird vom Österreichischen Wissenschaftsfond (FWF) [PAT 9140723] und der Europäischen Union – NextGenerationEU gefördert.

Ansprechpartner

Dipl.-Ing. Dr.techn. BSc Andreas Deutschmann-Olek

ProjektmitarbeiterInnen

Vojtech Mlynar

Laufzeit

2023 - 2025

Status

laufend