Precision robotic in-line metrology for freeform surfaces

High precision in-line measurements on free form surfaces are considered as a key factor for future industrial production. Robot-based measurement systems enable the required flexibility but are typically lacking the required precision. The scope of this project is the development of a measurement platform as end effector for a robot robot arm, carrying a measurement tool and compensating for environmental disturbances, enabling precision inline measurements. Read more →

Hybrid reluctance actuators for high precision motion

Next-generation high-quality motion systems require high-precision actuators with higher energy efficiency and larger force to improve the system throughput. Particularly, actuators with a motor constant higher than comparable voice coil actuators are highly desired. This project investigates hybrid reluctance actuators (HRAs) with guiding flexures as a promising candidate of next-generation systems. Read more →

Active Turbulence Suppression for Aircraft – SmartWings

Atmospheric turbulence is an unsolved problem for aviation. By investigating smart wing structures, which sense turbulence and actively reject disturbances by flap deflections, it shall become possible to fly through turbulence in a direct and reliable way in the future. Read more →


The precise tracking of high velocity satellites with ground based optical telescopes is a prerequisite for a number of future applications such as optical satellite communication, observation of space debris or satellite laser ranging. To achieve this goal, good mechatronic design as well as high performance control are necessary. Together with our industrial partner, ASA Astrosysteme GmbH, this project aims on increasing the achievable precision and tracking velocity of existing ASA ground stations. Read more →

Fundamentals of opto-mechatronic systems (OMC)

Currently innovation is taking place at the border of disciplines rather than in one individual field of engineering. This particularly holds for application domains that span more than one field of engineering, since a high level of system integration from different disciplines provides solutions that a single domain alone cannot provide. As an example, the combination of optics and mechatronics form the interdisciplinary field of opto-mechatronics. Read more →

Atomic Force Microscopy capable of vibration isolation (Vibrostop AFM)

An atomic force microscope (AFM) can image and inspect a sample surface with high resolution by scanning a probe with a sharp tip over the sample. During scanning, the vertical position of the probe with respect to the sample typically needs to be regulated with nanometer resolution. For the required high resolution, AFMs are sensitive to vibrations transmitted from the floor dependent on their design. Read more →

Automated in-line metrology for nanopositioning systems (aim4np)

Within the scope of this project, a novel approach is developed for robot-based in-line metrology to isolate nanoscale measurements from environmental vibrations. Instead of isolating sample and robot from floor vibrations by means of passive or active vibration isolation aids, the distance between sample and metrology tool is kept constant. Read more →

Precision actuator selection

Many applications require positioning with nanometer resolution. They include lithographic equipment for semiconductor and liquid crystal display (LCD) manufacturing and data storage devices such as hard disk drives (HDDs) and optical disk drives (ODDs) (e.g. CD/DVD/Blu-ray), as well as scientific instruments such as atomic force microscopes (AFMs). The achievable positioning resolution of these systems is typically influenced by vibrations transmitted from the floor. Read more →